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Abstract
If one defines the distance between two points as the Manhattan distance (the
sum of the horizontal distance along streets and the vertical distance along
avenues) then one can define a city as being optimal if the average distance
between pairs of points is a minimum. In this paper a nonlinear differential
equation for the boundary curve of such a city is determined. The problem
solved here is the continuous version of an optimization problem on how to
design efficient allocation algorithms for massively parallel supercomputers.
In the language of continuum mechanics, the shape of the optimal city is
that taken by a blob of incompressible fluid composed of molecules whose
pairwise interactions are described by an attractive potential proportional to the
Manhattan distance between the particles.

PACS numbers: 46.15.Cc, 02.30.Fn, 02.60.Pn

1. Introduction

An outstanding and practical problem in the field of computer science concerns the allocation
of processors to parallel programs in a supercomputer grid consisting of a large number of
processors [1–7]. This is a nontrivial problem because ordinarily some processors are already
allocated to other running programs. Thus, it is usually necessary to allocate from an irregular
set of free processors. The sum of the pairwise distances between the processors allocated
to a task strongly correlates with the running time required to complete the task [3, 5].
Therefore, a good strategy for processor allocation minimizes this quantity. An algorithm for
approximately minimizing the pairwise distances has already been implemented on Cplant, a
class of Sandia supercomputers [7]. The most closely related work approximately minimizing
pairwise distances for general metric spaces and pairwise Manhattan distances may be found
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in [8] and [9], respectivly. We emphasize that the pairwise distance between processors is the
number of vertical communication hops plus the number of horizontal communication hops.
Such a distance is commonly called the Manhattan distance.

In this paper we solve the continuum version of this allocation problem. We treat the
grid of processors as having a continuous two-dimensional planar distribution. For simplicity
we call such a distribution a city. Our objective is to find the shape of a city that minimizes
the average pairwise Manhattan distance between all points in that city. The techniques that
we use to solve this problem are those that are commonly used in the solution of continuum
mechanics and classical and quantum field theory problems, namely variational methods [10].

The problem being solved here has a simple physical interpretation in continuum
mechanics in terms of self-gravitating fluids. Imagine a two-dimensional fluid composed of
particles whose pairwise interactions are described by an attractive potential that is proportional
to the Manhattan distance between fluid particles. If this fluid is incompressible, then a given
blob of this fluid will pull itself into a configuration of the same area, whose shape minimizes
the total potential energy. This lowest energy shape is the optimal city shape.

In section 2 of this paper we formulate this optimization problem in mathematical terms.
Then, in section 3 we consider a one-parameter family of cities and find the shape of the
optimal city in this limited family. From this calculation we can see that the optimal city is
not circular. Next, in section 4 we carry out a full variational calculation and determine an
interesting nonlinear differential equation satisfied by the boundary of the optimal city. The
optimal city is nearly circular in shape but is not a disc.

Finally, in section 5 we offer some concluding observations and suggest some further
avenues for investigation. Our principal conclusions are that so long as an array of computer
processors is clustered in a tight shape having no holes or only small holes, the array will be
extremely close to optimal.

2. Formulation of the problem

Let w(x) be the upper boundary of the region occupied by the city. Without loss of generality
we may assume that w(x) is positive. Because the Manhattan distance is north–south
symmetric we may assume that the lower bound of the region is −w(x). Also, because
the Manhattan distance is east–west symmetric we may assume that w(x) = w(−x). The
boundary of the city must be continuous, so we assume that w(x) crosses the x-axis at the
point x = a : w(a) = w(−a) = 0.

Furthermore, because the north–south and east–west directions are of equal weight we
expect the shape of the city to be symmetric about the 45◦ lines y = x and y = −x. This
means that we may decompose the function w(x) into two functions, w(x) = g(x) below the
line y = x and w(x) = h(x) above the line y = x:

w(x) =
{
h(x) (0 � x � b)

g(x) (b � x � a)
(1)

where b marks the point on the x-axis where the boundary curve w(x) crosses the line
y = x. The symmetry about the line y = x implies that h(x) is the functional inverse of
g(x) : h(x) = g−1(x).

Finally, we define the length scale of this problem by choosing, without loss of generality,
to work in units such that b = 1. We summarize the properties of the functions w(x), h(x)

and g(x) as follows:

w(0) = h(0) = a

w(1) = h(1) = g(1) = 1



What is the optimal shape of a city? 149

h(x)

g(x)

a

a(0,  )

(  ,0)

(1,1)

Figure 1. Definition of the notation used in this paper. The curve that outlines the city is symmetric
with respect to reflections about the x axis y = 0, the y axis x = 0 and the 45◦ lines y = ±x.
In the upper-half plane this outline curve is called w(x). Note that w(x) crosses the y and x axes
at the points (0, a) and (±a, 0). The slope of w(x) is 0 at x = 0 and infinite at x = a. Also,
w(x) crosses the line y = x at the point (1, 1), and at this point the slope is −1. The portion of
the function w(x) in the range 0 � x � 1 is called h(x) and the portion of w(x) in the range
1 � x � a is called g(x). The functions h(x) and g(x) are inverses of one another because w(x)

is symmetric about the line y = x.

h(x) = g−1(x) (0 � x � 1)

w(x) � 0 (−a � x � a). (2)

The functions g(x) and h(x) are illustrated in figure 1.
Let the functional A[w] represent the area of the city whose boundary curve is shown in

figure 1. Note that A[w] is four times the area in the positive quadrant:

A[w] = 4
∫ a

x=0
dx w(x). (3)

Let the functional M[w] represent the integrated sum of the distances between all pairs
of points in the city. Then,

M[w] = 2
∫ a

x=−a

dx

∫ w(x)

y=−w(x)

dy

∫ a

u=−a

du

∫ w(u)

v=−w(u)

dv|x − u|. (4)

The factor of two in this equation arises because we have summed only over east–west
distances. North–south distances make an equal contribution.

Our objective is to describe the shape of a region of given area for which the average
pairwise distance between points in the region is minimized. That is, our objective is to find
the function w(x) that minimizes the functional M[w] subject to the constraint that the area
A[w] is held fixed. Note that M[w] has units of [length]5 and that A[w] has units of [length]2.
Thus, a dimensionless measure of the average pairwise distance is given by the ratio D[w]:5

D[w] = M[w]

(A[w])5/2
. (5)

To prepare for the calculations to be done in the next two sections we simplify the
functional M[w]. First, we perform the y and v integrals in (4), and then we decompose
5 Note that the optimization scheme in this paper minimizes the value of D[w] for a city of any given fixed area.
Because D[w] is dimensionless, the size of area A is irrelevant; the shape of the city that minimizes D[w] simply
scales with A. Thus, the shape of the city that minimizes D[w] also minimizes the average pairwise Manhattan
distance for any area A.
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the integration region to eliminate the absolute value signs. Finally, we split apart the terms,
change variable names, and merge integrands so that all limits are the same. Our final result is

M[w] = 64
∫ a

x=0
dx xw(x)

∫ x

u=0
duw(u). (6)

3. Special cases and optimization of a one-parameter family of boundary curves

Let us begin by illustrating the calculation of the dimensionless functional D[w] in (5) in
terms of A[w] in (3) and M[w] in (6) for some elementary shapes.

3.1. Square

Consider a square city defined by the function w(x) = 1(−1 � x � 1). For this geometry
a = 1, h(x) = 1 and g(x) is a vertical line connecting the points (1, 1) to (1, 0). The area of
this square is A = 4. We calculate M in (6) as follows:

M = 64
∫ 1

x=0
dx xw(x)

∫ x

u=0
duw(u) = 64

∫ 1

x=0
dx x

∫ x

u=0
du = 64

3
. (7)

Thus,

D = M

A5/2
= 2

3
≈ 0.666 667. (8)

3.2. Diamond

Next, consider a diamond-shaped city for which w(x) = 2 − |x|(−2 � x � 2). For this case
a = 2, the area of the city is A = 8, and

M = 64
∫ 2

x=0
dx xw(x)

∫ x

u=0
duw(u) = 64

∫ 2

x=0
dx x(2 − x)

∫ x

u=0
du (2 − u) = 1792

15
. (9)

Thus, for a diamond-shaped city

D = M

A5/2
= 7

15

√
2 ≈ 0.659 966. (10)

3.3. Disc

Now let us consider a circular city, whose boundary is given by w(x) = √
2 − x2 with

−√
2 � x �

√
2. Here, a = √

2, the area of the city is A = 2π , and

M = 64
∫ √

2

x=0
dx xw(x)

∫ x

u=0
duw(u) = 64

∫ √
2

x=0
dx x(2 − x2)

∫ x

u=0
du (2 − u2) = 2048

45

√
2.

(11)

Thus, for a circular city

D = M

A5/2
= 512

45π5/2
≈ 0.650 403. (12)
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3.4. The family of curves w(x) = (2 − |x|d)1/d

Evidently, a disc is a better shape for a city than a square or a diamond. Apparently,
the optimal city shape is rounded even though the Manhattan distance is composed of
vertical and horizontal measurements. On the basis of these calculations one might
wonder if a disc is indeed the optimal shape for a city. In fact, a disc is not optimal,
as we now show. Consider a one-parameter family of boundary functions of the form
w(x) = (2 − |x|d)1/d(−21/d � x � 21/d ). For this family of functions we have a = 21/d .
Note that this family includes a square (d = ∞), a diamond (d = 1) and a disc (d = 2) as
special cases.

It is noteworthy that the function D(d) is quite insensitive to the value of d: the values
of D for three such different city shapes, a square, a diamond and a disc, differ by only 3%.
We now show that a disc is not the optimal shape for a city by studying how the value of D
depends on d. The area of the city, as a function of d, is given by

A(d) = 4
∫ a

x=0
dx (ad − |x|d)1/d = 2a2

d

�2(1/d)

�(2/d)
(13)

where the gamma function is defined by �(α) ≡ ∫ ∞
x=0 dx e−xxα−1 and we have used the

standard integration formula [11]∫ 1

x=0
dx xα−1(1 − x)β−1 = �(α)�(β)

�(α + β)
. (14)

The expression for M(d) cannot be evaluated in closed form and may be left as a double
integral:

M(d) = 64a5
∫ 1

x=0
dx x(1 − xd)1/d

∫ x

u=0
du (1 − ud)1/d . (15)

For numerical purposes we convert this expression for M(d) to an infinite sum. We do so
by expanding the expression (1 − ud)1/d into a binomial series and using (14) to perform the
double integration:

M(d) = 16
�(1 + 1/d)

d�(−1/d)

∞∑
n=0

�(n − 1/d)�(n + 3/d)

n!(1 + nd)�(n + 1 + 4/d)
. (16)

This series converges like n−3−2/d for large n and is therefore useful for obtaining numerical
results.

We have evaluated D(d) = M(d)A−5/2(d) numerically for many values of d in the range
0 � d < ∞. (See table 1 and figure 2.) The function D(d) is infinite at d = 0, falls to a
minimum just below d = 2 and then rises and levels off at d = ∞.

We expect the shape of an optimal city to be convex. The function w(x) = (ad − xd)1/d

is convex when d � 1 and concave when d < 1. Thus, we expect the optimal value of d for
this class of functions to be in the range d > 1. Indeed, by interpolating the values in table 1
we find that D(d) attains its minimum of 0.650 247 634 near d = 1.815 46.

Nevertheless, it is interesting to study the function D(d) for values of d less than 1 to see
what happens when the city is not convex. For example, when d = 2

3 , the boundary curve
w(x) becomes an astroid 6. It is remarkable that even for this concave city shape the value of
D(2/3) ≈ 0.686 397 does not differ much from the value of D(2) ≈ 0.650 403 for a circular
city.
6 An astroid is the path of the centre of mass of a ladder as it slides down a wall with one end of the ladder in contact
with the wall and the other in contact with the floor.
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Table 1. Numerical values for D(d) = M(d)A−5/2(d) for the one-parameter family of boundary
curves w(x) = (ad − xd)1/d with ad = 2. These curves are concave for d < 1 and convex for
d � 1. For this family of boundary curves the minimum value of D(d) is 0.650 247 634, and this
value is attained when d ≈ 1.815 46. It is remarkable that this one-parameter family of curves
gives an extremely close approximation that differs by only 2.6 × 10−4% from the true minimum
of the functional D[w]. The true minimum, as obtained in section 4, is 0.650 245 952 951.

Boundary shape d D(d)

Concave boundaries
Plus sign 0 ∞

1/64 16 134.274
1/32 82.153 831
1/16 6.122 774
1/8 1.719 920
1/4 0.940 692
1/2 0.723 183

Astroid 2/3 0.686 397
Convex boundaries

Diamond 1 0.659 966
1.81 0.650 247 797
1.812 0.650 247 700
1.814 0.650 247 646

Optimal 1.815 46 0.650 247 634
1.816 0.650 247 636
1.818 0.650 247 670
1.82 0.650 247 746

Disc 2 0.650 403
Square ∞ 0.666 667

The growth of the function D(d) for small d can be obtained by using Laplace’s method to
evaluate the double integral for M(d) in (15) in the limit of small d. The asymptotic behaviour
of M(d) is given by

M(d) ∼ 64π

d
√

3
27−1/d (d → 0+).

Using the Stirling formula to approximate the gamma functions in A(d) in (13) we obtain

D(d) ∼ 2d1/4

π1/4
√

3

(
32

27

)1/d

(d → 0+). (17)

This asymptotic approximation is extremely accurate. At d = 1
32 the numerical value of D(d)

is 82.153 831, while this asymptotic formula predicts the value 83.763 and at d = 1
64 the

numerical value of D(d) is 16 134.274 096, while this asymptotic formula predicts the value
16 179. The relative error in the latter prediction is about 0.3%.

4. Variational determination of the boundary curve

We now use variational methods to determine a differential equation satisfied by the boundary
curve. We begin by simplifying the functionals A[w] and M[w].
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Figure 2. Plot of D(d) = M(d)A−5/2(d) for the class of boundary curves w(x) = (ad − xd)1/d

with ad = 2 in the range 1.7 � d � 1.9. The optimal city, that is, the city for which D(d) is
minimized, is nearly circular, but is definitely not a disc (d = 2). The minimum value of D(d) for
this one-parameter family of boundary curves is obtained when d ≈ 1.815 46.

4.1. Exploiting the symmetry across y = x

To prepare for our variational calculation we decompose w(x) into its separate components
g(x) and h(x). Then, using symmetry arguments, we eliminate all dependence on g(x). Our
optimization procedure will then determine the value of a. To begin we note that the area
A[w] in (3) is eight times the area in the positive octant above the line y = x:

A[h] = 8
∫ 1

x=0
dx[h(x) − x] = 8

∫ 1

x=0
dx h(x) − 4. (18)

Next we turn to the quantity M[w] in (6) and decompose w(x) into h(x) and g(x):

M[g, h] = 64
∫ 1

x=0
dx xh(x)

∫ x

u=0
duh(u) + 64

∫ a

x=1
dx xg(x)

[∫ 1

u=0
duh(u) +

∫ x

u=1
du g(u)

]
.

(19)

Note that from (18) we can evaluate one of the integrals in terms of A[h]:∫ 1

u=0
duh(u) = A

8
+

1

2
. (20)

Thus, M[g, h] is

M[g, h] = 64
∫ 1

x=0
dx xh(x)

∫ x

u=0
duh(u) + (8A[h] + 32)

∫ a

x=1
dx xg(x)

+ 64
∫ a

x=1
dx xg(x)

∫ x

u=1
du g(u). (21)

To replace g(x) by h(x), we exploit the inverse relationship between the two functions:
h(x) = g−1(x). Thus, if g(x) = γ and x : 1 → a, we have γ : 1 → 0. Hence, we can write

x = g−1(γ ) = h(γ ) (22)
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and

dx = h′(γ ) dγ = 1

g′(γ )
dγ. (23)

Similarly, we let g(u) = α, for α : 1 → 0 (and u : 1 → a), implying that
u = g−1(α) = h(α). Therefore, du = h′(α) dα = 1

g′(α)
dα. We then change the integration

variables to obtain

M[h] = 64
∫ 1

x=0
dx xh(x)

∫ x

u=0
duh(u) − (4A[h] + 16)

∫ 1

x=0
dx x[h2(x)]′

+ 32
∫ 1

x=0
dx x[h2(x)]′

∫ 1

u=x

du uh′(u). (24)

4.2. Preparing M[h] for functional differentiation

It will be necessary to calculate the functional derivative of M[h]. To simplify this procedure
we use integration by parts to remove all instances of the derivative function h′(x). Integrating
by parts four times and simplifying gives the following expression:

M[h] = 64
∫ 1

x=0
dx xh(x)

∫ x

u=0
duh(u) − 4A[h] − 16

3
+ (4A[h] − 16)

∫ 1

x=0
dx h2(x)

+
32

3

∫ 1

x=0
dx xh3(x) + 32

∫ 1

x=0
dx h2(x)

∫ 1

u=x

duh(u). (25)

4.3. Performing the functional differentiation

We must minimize M[h]
(A[h])5/2 , subject to the constraint that h(1) = 1. We impose this constraint

by introducing a Lagrange multiplier λ:

D[h] = M[h]

(A[h])5/2
+ [h(1) − 1]λ.

Note that if we differentiate with respect to λ, we recover the original constraint,

∂D[h]

∂λ
= 0 ⇒ h(1) = 1.

We will also need the functional derivative of A[h]:

δA[h]

δh(z)
= δ

δh(z)

[
8
∫ 1

x=0
dx [h(x) − x]

]
= 8. (26)

4.3.1. Calculating δM[h]/δh(z). We now calculate the functional derivative of M[h] in
(25). To prepare for functional differentiation we introduce the Heaviside step function to
remove all variables from the limits of integration. The Heaviside step function H(x) is
defined as follows:

H(x) ≡
{

1 (x � 0)

0 (x < 0).
(27)
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We perform the following differentiation:

δM[h]

δh(z)
= δ

δh(z)

[
64

∫ 1

x=0
dx xh(x)

∫ 1

u=0
duh(u)H(x − u) + (4A[h] − 16)

∫ 1

x=0
dx h2(x)

− 4A[h] − 16

3
+

32

3

∫ 1

x=0
dx xh3(x) + 32

∫ 1

x=0
dx h2(x)

∫ 1

u=0
duh(u)H(u− x)

]

= 64z

∫ z

u=0
duh(u) + 64

∫ 1

x=0
dx xh(x)

∫ 1

u=0
du δ(z − u)H(x − u) − 32

+ 32
∫ 1

x=0
dx h2(x) + (8A[h] − 32)h(z) + 32zh2(z)

+ 64h(z)

∫ 1

u=0
duh(u)H(u − z) + 32

∫ 1

x=0
dx h2(x)H(z − x). (28)

Finally, we remove the Heaviside function and restore the limits on the integrals:

δM[h]

δh(z)
= 64z

∫ z

u=0
duh(u) + 64

∫ 1

x=z

dx xh(x) − 32 + 32
∫ 1

x=0
dx h2(x)

+ (8A[h] − 32)h(z) + 32zh2(z) + 64h(z)

∫ 1

u=z

duh(u) + 32
∫ z

x=0
dx h2(x).

(29)

4.3.2. Calculating δD[h]/δh(z). Now that we have obtained the functional derivative of
M[h] in (29), we can calculate the functional derivative of D[h]:

δD[h]

δh(z)
= 1

(A[h])5/2

δM[h]

δh(z)
− 5

2(A[h])7/2
8M[h] + λδ(z − 1). (30)

Since the only term containing a delta function is the last term, when we set δD[h]
δh(z)

= 0, we
learn that λ = 0 and that h(1) = 1.

Substituting the expressions for δM[h]
δh(z)

in (29) and M[h] in (25) into this equation, we
obtain

0 = 8A[h]z
∫ z

u=0
duh(u) + 8A[h]

∫ 1

x=z

dx xh(x) + 6A[h] − 6A[h]
∫ 1

x=0
dx h2(x)

+ A[h](A[h] − 4)h(z) + 4A[h]zh2(z) + 8A[h]h(z)

∫ 1

u=z

duh(u)

+ 4A[h]
∫ z

x=0
dx h2(x) − 160

∫ 1

x=0
dx xh(x)

∫ x

u=0
duh(u) +

40

3

+ 40
∫ 1

x=0
dx h2(x) − 80

3

∫ 1

x=0
dx xh3(x) − 80

∫ 1

x=0
dx h2(x)

∫ 1

u=x

duh(u).

(31)

4.4. Expressing the boundary as a differential equation

The integro-differential equation (31) expresses the shape of the boundary of the optimal city.
Our objective now is to convert this equation to an ordinary differential equation. We begin
by differentiating (31) with respect to z

0 = 8zh(z)h′(z) + (A[h] − 4)h′(z) + 8
∫ z

u=0
duh(u) + 8h′(z)

∫ 1

u=z

duh(u). (32)
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Next, we introduce the function f (x), whose derivative is h(x):

f (x) ≡
∫ x

u=0
duh(u) (33)

so that f ′(x) = h(x) and

f (0) = 0. (34)

Note that from (2) we have

f ′(1) = h(1) = 1. (35)

Also, (33) and (18) imply that

A[f ] = 8f (1) − 4. (36)

Finally, substituting the function f (z) into (32) we obtain the following differential
equation:

0 = zf ′(z)f ′′(z) + [2f (1) − 1]f ′′(z) + f (z) − f ′′(z)f (z). (37)

Note that if we evaluate this differential equation at z = 1 and z = 0, then we obtain the
two conditions

f ′′(1) = h′(1) = −1 (38)

and

f ′′(0) = h′(0) = 0. (39)

The first of these conditions shows that the slope of the boundary curve at the point (1, 1),
where h(x) joins onto g(x) in the positive quadrant, is −1. This result implies that the boundary
curve has a continuous derivative at this point and thus there is no cusp there. Similarly, the
second of these conditions shows that the boundary curve at the point (0, a) is level. Thus,
again there is no cusp at this point. In short, the boundary of the optimal city has no dimples.

4.5. Substituting f (z) into M[h]

We now show that the functional M[h] simplifies dramatically when M[h] is evaluated at the
optimal boundary curve. We substitute f (x) into (25). Then we use the differential equation
(37) to simplify the result:

M[f ] = 64
∫ 1

x=0
dx xf ′(x)

∫ x

u=0
du f ′(u) − 4A[f ] − 16

3
+ (4A[f ] − 16)

∫ 1

x=0
dx f ′2(x)

+
32

3

∫ 1

x=0
dx xf ′3(x) + 32

∫ 1

x=0
dx f ′2(x)

∫ 1

u=x

du f ′(u). (40)

Performing the indicated integrations and doing repeated integration by parts, we simplify this
equation to

M[f ] = 64
∫ 1

x=0
dx xf ′(x)f (x) − 4A[f ] − 32f (1) + 16 + {4A[f ]

+ 32f (1) − 16}
∫ 1

x=0
dx f ′2(x) − 64

∫ 1

x=0
dx x2f ′2(x)f ′′(x)

+ 64
∫ 1

x=0
dx xf (x)f ′(x)f ′′(x). (41)

Next, in the last two integrals we use the differential equation (37) to replace the
expression f ′′(x)f (x) − xf ′(x)f ′′(x), which is cubic in f , by the quadratic expression
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Figure 3. Plot of f (x) for 0 � x � 1. Note that f (0) = 0 and that f ′(1) = 1. By repeated
iteration (shooting) we find that f (1) = 1.311 794 482 332. The derivative of the plotted function
f (x) gives the boundary of the optimal city and for this city the value of D is 0.650 245 952 951.

[2f (1)− 1]f ′′(x) + f (x). The resulting formula for M[f ] simplifies, after further integration
by parts, to

M[f ] = −64
∫ 1

x=0
dx f 2(x) + 64f 2(1) (42)

where we have used the formula A[f ] = −4 + 8f (1) in (36).

4.6. Numerical results

We have now completed the analytical work and reduced the problem of finding the boundary
of the optimal city to a numerical computation. The numerical procedure is a follows: first,
we guess a value, say c, for f (1). Also, we know from (35) that f ′(1) = 1. From these two
initial conditions we solve the differential equation (37) numerically to obtain the value of
f (0). But, from (34) we know that f (0) = 0. By repeated shooting, we determine the value
of c that gives the result f (0) = 0. When we achieve this condition, we then learn that the
value of a = f ′(0) = h(0) = 1.463 110 117 728 (see (2)). The shape of the boundary h(x) is
given by the derivative of f (x) : h(x) = f ′(x). Once we have found f (x), we then compute
the value of D[f ] from

D[f ] = M[f ]

(A[f ])5/2
= 64f 2(1) − 64

∫ 1
x=0 dx f 2(x)

[8f (1) − 4]5/2
. (43)

Our numerical analysis reveals that the minimum value of D[f ] is 0.650 245 952 951,
which is about a 2.6 parts per million improvement in the optimal value of D obtained by
using the one-parameter family of functions w(x) = (2−|x|d)1/d . The optimal function f (x)

is displayed in figure 3, and the optimal boundary curve w(x) is shown in figure 4.
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Figure 4. Plot of the function w(x) for x � 0. The function w(x) is composed of h(x) for
0 � x � 1 and g(x) = h−1(x) for x � 1. Note that h(0) = f ′(0) = a = 1.463 110 117 728.
The number a is the value of x at which g(x) crosses the x axis. The function h continues onto the
function g at the point (1, 1), which is marked by a + sign. For this optimal boundary curve the
(minimum) numerical value of the functional D is 0.650 245 952 951. For purposes of comparison,
the dotted line is a quarter circle, illustrating that the optimal city is close to circular.

5. Discussion and conclusions

The principal conclusion that can be drawn from the calculations in this paper is that if a city
is tightly clustered and convex, then it is extremely close to optimal; that is, its value of D[w],
where w is the boundary curve of the city, is close (just a few per cent off) to the optimal value
0.650 245 952 951. Thus, an allocation of computer processors from an array of processors,
so long as they are tightly bunched and convex, will be close to optimal as measured by the
average pairwise Manhattan distance metric.

We already know from table 1 that if a city departs markedly from convexity (say, it is
shaped like an astroid) then it will be far from optimal. It is also interesting that if the city
has holes then the corresponding value of the functional D can also increase significantly.
To illustrate we consider the case of an annular city, whose outside diameter is 1 and whose
inside diameter is r. Note that the hole of radius r in the centre of the city may be one of two
possible types, a park or a lake. If the hole is a park, then the notion of the Manhattan distance
between two points in the city does not change (one can walk through the park). If the hole is
a lake, one must walk around it, and the definition of the distance between two points in the
city changes accordingly.

Let us consider the simpler case of a park. The area of this city is A(r) = π(1 − r2).
Also, we calculate that the pairwise Manhattan distance is

M(r) = 512
45 (1 + r5) − 8

3π(2r2 + r4)2F1
(− 1

2 , 1
2 ; 3; r2

)
+ 2

9π(r4 − r6)2F1
(

1
2 , 3

2 ; 4; r2
)
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where 2F1(a, b; c; z) is the hypergeometric function [11]. The value of M(r) for this
city reduces to that in table 1 for a disc when r = 0 and it vanishes when r = 1 (the
annulus becomes a circle). For this city, the value of D(r) in (5), which measures the
optimality of the city shape, grows rapidly with r : D(0) ≈ 0.650,D(0.3) ≈ 0.713,
D(0.6) ≈ 0.947,D(0.9) ≈ 1.998,D(0.99) ≈ 6.531 and limr→1 D(r) = ∞.

There are many interesting possible continuations of this study. For example, one can
consider cities whose dimension is higher than two. For such cities, the boundary is a surface
rather than a curve, and thus the boundary is described by a partial differential equation rather
than an ordinary differential equation. Hence, the calculations are much more elaborate and
have not been considered here.

Another possible generalization of this work is to consider metrics other than the
Manhattan distance (p-norms where p 
= 1). (Of course, the Euclidean metric, for which
p = 2 is trivial, and in this case the optimal city is a disc.) Additionally, one could minimize
the average of the squares of the pairwise distances for the city. Squares of distances are
commonly considered by computer scientists and statisticians in clustering applications.
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